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2 Instituto de Matemática, Universidade Federal da Bahia Campus Universitário da Federação,

40130-240 - Salvador - BA, Brazil

Received 20 August 2007
Published online 6 February 2008 – c© EDP Sciences, Società Italiana di Fisica, Springer-Verlag 2008

Abstract. A concept of higher order neighborhood in complex networks, introduced previously [Phys.
Rev. E 73, 046101 (2006)], is systematically explored to investigate larger scale structures in complex
networks. The basic idea is to consider each higher order neighborhood as a network in itself, represented
by a corresponding adjacency matrix, and to settle a plenty of new parameters in order to obtain a best
characterization of the whole network. Usual network indices are then used to evaluate the properties of
each neighborhood. The identification of high order neighborhoods is also regarded as intermediary step
towards the evaluation of global network properties, like the diameter, average shortest path between node,
and network fractal dimension. Results for a large number of typical networks are presented and discussed.

PACS. 89.75.Fb Structures and organization in complex systems – 89.75.Hc Networks and genealogical
trees – 02.10.Ox Combinatorics; graph theory

1 Introduction

In recent years, complex networks have become one of the
major research themes in complex systems. They allow for
an interesting interplay between mathematics and physics
through the well-established theories of graphs and statis-
tical mechanics [1–3]. Based on concepts developed within
these theories, several concepts were developed to charac-
terize the networks.

The huge development in this research area comes
along with the proposition of parameters that capture
some essential properties that such objects may have.
Most of the current works in the literature expresses the
quantitative results in terms of a hand full of indices
or quantifiers [4–6], like the average number of links per
node 〈k〉, clustering coefficient C, mean minimal distance
among the nodes 〈d〉, diameter D, and the assortativity
degree A. Also of relevance are certain relations that ex-
press how these quantifiers are composed, like p(k), the
probability distribution of nodes with k links, the distri-
bution of each individual node clustering coefficients C(k)
with respect to its node degree, and the average degree of
the neighbors of a node with k links 〈knn(k)〉.

Nevertheless, other parameters can be proposed to
account for other properties that are overlooked by the
above quoted set. The actual relevance of the information
brought by a new parameter depends whether it is, in a
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certain sense, orthogonal to the set of parameters that had
been used so far. In such case, its evaluation contributes
either to emphasize similarities among a set of networks,
or to uncover differences among them. Therefore, new
parameters may indeed become relevant to identify dif-
ferences between networks that could have been thought
to be similar in a more restricted space of characteriza-
tion parameters. With the help of pertinent correlation
analysis among distinct measures, it is possible to decide
whether the new parameter provides additional informa-
tion on the network structure [7]. Also, such analyzes make
it easier to identify whether a given network can be casted
into one of (or more) some typical network classes that
have been systematically studied.

From our point of view, it is important to probe the
network with respect not only to the immediate, close
neighborhood of a node, but also how all pairs of nodes
are related among themselves, from the nearest up to the
maximal distance D.

In a previous work [8], we have indicated how the adja-
cency matrix M of a network R can be used to obtain all
higher order neighborhoods of a node in R with the help of
Boolean product of matrices. According to the definition
introduced there, two nodes in R are neighbors of order
O(�), � = 1, 2, ..., D, when the shortest path connecting
them, along links in R, has � steps. For the purpose of
completeness, it is interesting to define that each node is
neighbor of order O(0) of itself.
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It is worth mentioning that other authors [9–17] also
defend similar positions to ours, having proposed several
strategies to investigate network properties that advance
beyond the immediate vicinity of a node. However, as it
shall be clear in the next sections, our approach is quite
different from those just presented in the related litera-
ture.

The aim of the current work is to characterize the
large structure properties of R by a larger set of measures,
which are based on the higher order adjacency matrices
M(�) describing the corresponding neighborhoods O(�).
The process of evaluating all M(�)’s is of importance as
it unfolds, in a straightforward way, a large amount of
information contained in M . It can be used for the anal-
ysis of the higher order neighborhood properties, like the
analysis of the spectral density [8]. There we exemplify
the consistency and usefulness of the proposed framework,
characterizing the eigenvalue spectra of matrices M(�) for
several types of networks. For each M(�), we apply the
same procedures used on M to evaluate the quoted set
of indices to characterize R. This way, we obtain new
measures 〈k(�)〉, C(�), p(k; �), A(�), and the distribution
C(k; �). The � dependent measures are useful to express
topological properties and dynamical processes in R that
can only be achieved by moving exactly � steps from each
node.

Nevertheless, this framework offers an alternative
topological interpretation for our results, based on the fact
that the M(�)’s can also be regarded as describing a set
of networks R(�). Each of them is formed by the same set
of nodes as R, but the set of edges in R(�) links pairs of
nodes that first reach each other after � steps in R. Within
this interpretation, the � dependent measures describe the
immediate neighborhood of hypothetical R(�) networks.

As already quoted, this framework goes along several
recent efforts [9–17] to characterize networks through the
connection of a node to its more distant neighbors. In-
deed, some of proposed measures, as the set C(�), are
closely related to similar clustering coefficients introduced
to identify whether two distant neighbors of a node are
first order neighbors of each other [16]. Measures quanti-
fying how the number of more distant neighbors behave
with respect to �, discussed recently in the context of so-
cial networks [9,17], are connected to 〈k(�)〉 quoted above.

The exact values of the global network parameters D
and 〈d〉 are readily obtained after the decomposition pro-
cess. In addition to that, the adopted procedure stores in
̂M, valuable information on the neighborhood structure
that is required for the evaluation of the fractal dimen-
sion dF of a network, according to a scheme [18] proposed
recently.

The rest of this work is so organized: in Section 2
we briefly review the main steps required to describe the
higher order networks, and discuss how the quantities ob-
tained in this process can be used to describe and rep-
resent other properties of networks. Section 3 is divided
into subsections. In each of them, we discuss, respectively,
the behavior of C(�), 〈k(�)〉, p(k; �), C(k; �), A(�), and dF

for a large number of networks. In this work we consider

networks generated by well defined algorithms, as those
proposed by Erdös and Renyi (ER) [19], Barabasi and Al-
bert (BA) [20], and Newman [5]. As this later corresponds
to a slightly changed version of the original Watts and
Strogatz (WS) [21] algorithm, we denote it by WS-N. We
also include deterministic networks, like the Cayley tree
with coordination number 3 (CT), the Apollonian network
(AN) [22] and two well known structures that have been
largely used in the context of spin models in statistical
mechanics [23], namely, the Diamond Hierarchical Lattice
(DHL) and the Wheatstone Hierarchical Lattice (WHL).
Whenever pertinent, we include a comparison of the values
we obtained with those for similar parameters proposed in
other works to characterize the topology of more distant
neighbors already proposed by other authors. Finally, in
Section 4, we close the work with final remarks and con-
clusions.

2 Evaluating the adjacency matrices M(�)

As explained in the Introduction, each R(�) is described
by M(�), � ∈ [0, D], with the following property:

M(�)ij =
{

1, if j ∈ Oi(�)
0, otherwise (1)

where Oi(�) is the set of �-neighbors of node i. Note that
this definition also describes M(0) = I, the identity ma-
trix. Once the matrix elements of each M(�) are either 0
or 1, it is possible to use well known Boolean (B) opera-
tions of sum ⊕, subtraction � and multiplication ⊗ [24] to
successively evaluate all elements of M(�), � = 1, 2, ...D.

This can be easily accomplished in a two step process,
that can be illustrated when � = 2. First note that, if the
matrix element (i, j) of M(2) = M(1) ⊗ M(1) is equal
to 1, we know that it is possible to go from node i to j

by a two-step walk. M(2) distinguishes itself from M(1)2,
the usual matrix product of M(1) by itself, as it indicates
the existence of two-step walks, but not the multiplicity of
walks informed by the later. In the sequence, we note that
M(2) includes more elements 1 than necessary to account
for all pairs of nodes for which the shortest path equals
to 2. Indeed, M(2) has 1’s in the whole main diagonal, as
well as between nodes i and j that, together with a third
node k, are connected in a triangle. The first set of 1’s in
the diagonal is already described by M(0), while the sec-
ond is already present in M(1). Taking these observations
into account, it is possible to obtain

M(2) = (M(1) ⊕ M(2)) � (I ⊕ M(1)), (2)

which can be rewritten in a more convenient form as

M(2) = (I ⊕ M(1)) ⊗ M(1) � (I ⊕ M(1)). (3)

Equation (3) can be easily generalized by finite induction
for arbitrary value of � by:

M(�) =

(

�−1
⊕

g=0

M(g)

)

⊗ M(1) �
(

�−1
⊕

g=0

M(g)

)

. (4)
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Fig. 1. (a) Small network with 5 nodes and 5 edges (solid
lines). Neighbors of second and third order are connected, re-
spectively, by dashed and dotted lines. (b) Network neighbor-

hood matrix ̂M.

In Figure 1a we illustrate the neighborhoods of all orders
in a simple network with 5 nodes and diameter D = 3.
Besides the direct links in solid black lines, we also draw
the connections of order � = 2 and 3.

The evaluation of all M(�)’s opens the path for a direct
evaluation of many network parameters. Many of them are
neighborhood dependent and, as far as we know, have not
been considered before. On the other hand, the evalua-
tion of some global parameters, which have usually been
performed along other methods, can be obtained within
this framework in a straight forward way. Let us first note
that, once N is finite, for some large enough �max we find
M(�) ≡ 0, ∀� > �max, so that D ≡ �max. Next, the knowl-
edge of all M(�) allows for the definition of the matrix ̂M,
which carries all information on the shortest path between
any two vertices i and j along the network. As, according
to (1), M(�)ij = 1 for only one �, the definition

̂M =
D

∑

g=0

gM(g), (5)

implies that, for all pairs (i, j) ∈ O(�), ̂Mij = �. In Fig-
ure 1b we show ̂M for the simple network drawn in Fig-
ure 1a. Note that ̂M is only a bit differently defined from
the so called distance matrix [25] used in the graph theory;
it is reduced to that one in the case of a connected net-
work. With the help of (5), the average minimal path for
a node i is easily expressed by di = (

∑N
j=1

̂Mi,j)/(N − 1),
leading, immediately, to the average 〈d〉.

Despite the fact that several complex networks have an
intrinsic length scale, represented e.g., by 〈d〉 or D, there
have been some attempts to associate fractal dimensions
to these objects. The definition for a fractal dimension dF ,
cited in the introduction, is deeply related to the concept
of O(�) neighborhoods. Indeed, once length is measured
in R by the number of steps between nodes, scaling argu-
ments lead to

L(�) ∼ �dF . (6)

In this expression, L(�) counts the number of boxes re-
quired to cover all nodes in the network such that: (i) any
node is covered only by a single box; (ii) any two nodes i

and j in a given box, are O(�′) neighbors of each other,
with �′ ≤ �. Thus, the knowledge of the matrices M(�)
constitutes an important step towards the evaluation of
the set of boxes for each value of �.

The evaluation of large scale structures in the net-
work proceeds by considering each R(�), represented by
M(�), as an independent network. Therefore, the pa-
rameters C(�), 〈k(�)〉, p(k; �), C(k; �) and A(�), which
describe the local information on each R(�), also pro-
vide information on the large scale structures of R. For
any value of � and node i, the node degree ki(�) =
∑N

j=1 M(�)i,j and the node clustering coefficient Ci(�) =
∑

m∈Oi(�)

∑N
j=1 M(�)i,jM(�)m,j/2 are directly expressed

in terms of elements of M(�), while the other three quan-
tities follow immediately by counting the number of oc-
currences of nodes with degree k(�).

To characterize a data set represented as a network,
one has to know whether all points are indeed connected
among themselves in a single component, or partitioned
into disjoint sub-networks. This important large scale
property can be exactly answered provided the set M(�) is
evaluated. If the network consists of a single component,
the quantity Z, defined by

Z ≡
D

∑

�=1

N
∑

j=1

M(�)i,j , (7)

always assumes the value N(N − 1). If Z < N(N − 1),
two or more components are present and, in this case,
their number and corresponding sizes can be evaluated as
follows. First evaluate κi = 1 +

∑D
�=1 ki(�) < N − 1, ∀i.

It counts the number of nodes in the specific component
the node i belongs to, but it also indicates possible sizes
for any other component. The maximal number of distinct
values assumed by κi is limited by (−1+(1+8N)1/2)/2. If
σ(κ) represents the number of nodes that share the same
value of κ, the number of components of this size is simply
σ(κ)/κ, what completes the characterization on the par-
tition of the network. The adjacency matrix of a non con-
nected network, by a suitable rearrangement of its nodes,
may be reduced to a form of non-zero diagonal blocks, i.e.
a direct sum of matrices of smaller order, each block cor-
responding to a connected component of the network. Be-
cause of this, one may just deal with connected networks,
as we shall consider herein. We would like to emphasize
that, for the sake of simplicity, we will restrict ourselves
to present results only for undirected networks, without
self links, and parallel links between any two nodes.

3 Neighborhood characterization

In this section we present a characterization of O(�) neigh-
borhood for some standard networks. A flavor of this pro-
cedure is available in a previous work [8], where we con-
centrated on the spectral properties of the networks R(�).
A summary of our most interesting results are depicted in
Figures 2–7, where we draw the parameters quoted in the
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previous section as function of the neighborhood �. The
results were obtained for geometrically grown networks
(CT, AN, DHL, WHL), but also for networks generated by
precisely defined algorithms (ER, BA and WS-N). They
display features that allow to associate them with differ-
ent complex network scenarios: small world (〈d〉 � log N ,
“large” C, mostly assortative); scale free (p(k) ∼ k−γ ,
“small” C, dissortative); random (p(k) ∼ Gaussian distri-
bution, “small” C, anassortative) [6]. This investigation
indicates the properties of �-neighborhoods for each of
these scenarios. We discuss results for networks ranging
from N ∼ 100 up to a maximum of N = 10 000 nodes, the
choice of N depending on which aspect must be empha-
sized. As will be exemplified for some specific situations,
our results remain quite independent of the size of the
network, provided we scale properly the linking probabili-
ties with N for those networks generated by random algo-
rithms. All of them are prototypes of many other natural
and social networks.

3.1 Clustering coefficient

The physical meaning of the coefficients C(�) is closely
related to that of the usual clustering coefficient. As, for
each value of �, the connection among nodes corresponds
to a connection through � steps in the original network,
C(�) measures how the neighbors of higher order of a node
are connected among themselves along � step paths. The
increase or decrease in the value of C(�) with respect to
C(� = 1) indicates whether the nodes become more likely
to build cliques or not. As we shall see in the following, the
behavior is strongly dependent on the network features,
so that these measures uncover new information about
node connectivity that can not be displayed by the single
parameter C(1).

Figure 2 shows how C(�) behaves for the distinct net-
works. For the CT, C(�) oscillates between zero and finite
values for odd and even values of �. This is explained by
the fact that, as � grows, the R(�) networks assume, alter-
nately, the structures of loop-less trees and Husimi cac-
tuses, which entail a lot of triangles. This network has rel-
atively large diameter, so that this behavior is sustained
for several periods. Finite size effects cause a small de-
crease of the value of C(�), what is enhanced when � ap-
proaches D. Similar behavior is observed in many other
situations, as the regular hyper-cubic lattices of dimension
larger than 1, where triangles appear only for even �’s. It
is also present in hierarchical structures as DHL. On the
other hand, WHL behaves differently only for � = 1, when
C(1) = 0.57, due to the presence of triangles. However
they are absent for all larger order odd � > 1, so that an
oscillatory pattern between 0 and non-zero values of C(�)
sets in.

A second common pattern for C(�) is that of curve
with a well defined maximum, taking finite values only
over a finite range. It is found for BA networks generated
according to the standard procedure [20], as well as for
ER networks when, for instance, N = 1000 and linking

Fig. 2. Dependence of C(�)×� for the seven distinct networks.
Conventions for (symbol, line) introduced here and used in
the rest of this work are as follows: CT (up triangle, dash
dot); AN (down triangle, dash dot dot); DHL (left triangle,
short dash); WHL (right triangle, short dot); BA (diamond,
dash); ER (square, solid); WS-N (circle, dash). The data were
obtained for following values of N : (a) 1534 (CT), 684 (DHL),
1564 (WHL). (b) 3283 (AN), 2000 (BA); for ER, N = 1000
and pa = 0.008; for WS-N, N = 1000, pr = 0.2.

probability pa = 0.008. For the BA networks, this pat-
terns emerges because neither the dominant hubs nor the
nodes with lower k are likely to be connected in cliques.
However, the hubs induce many lower k’s nodes to form
cliques at second and third order neighborhoods, explain-
ing the sharp increase in the value of C(�). The decrease in
the value of C(�) as � → D reflects the fact that the most
part of all pairs of nodes have already been considered.
For ER networks, similar arguments apply.

A third kind of pattern has also been observed for net-
works that are characterized by a large value of C(1) as,
e.g., the AN and WS-N networks. In the first case we start
from a large value of C(1) = 0.828, following an almost
monotonic decrease of C(�). The same is observed for rel-
atively large values of the rewiring probability pr in WS-N
networks.

We find important to notice, however, that if the be-
havior for the deterministic networks remain essentially
the same as N grows, the same is not observed for WS-N
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and ER if we keep N constant and decrease the values
for, respectively, pr and the linking probability pa. For
both situations, oscillatory pattern between non-zero val-
ues emerges, indicating a similar picture to those of geo-
metrically constructed networks.

It is worth mentioning that other authors also pro-
posed some generalized extensions of the notion of the
clustering coefficient. In [10], it is investigated the issue if
two neighbors of a given node r are far from each other
with a chosen distance x that do not pass through r. Dif-
ferently, in [16], the author asks if two nodes, at a cho-
sen distance � of a node r, are neighbors of each other.
Of course it is possible to generalize the clustering coeffi-
cient definition, considering the possibilities of two nodes
at distance � of r being connected by t steps, where
t = 1, 2, ..., 2�. Our measure C(�) corresponds to t = �,
whereas that one in [16] considers t = 1. Finally, there
are also more ways to interpret the concept of neighbor-
hood of a given node [12]. However, despite the similarities
among the distinct measures, our approach seemingly in-
troduces new specificities, which are different from those
of the known literature.

3.2 Average degree

The measure 〈k(�)〉 has a more direct physical meaning
than the previous one, as it does not involve the connec-
tivity among neighbors, but only counts how the number
of neighbors at a given distance � of a node varies with �.
For regular lattices, the higher order neighbors 〈k(�)〉 of a
site are roughly located on the surface of a hyper-sphere.
Their number grows as �dim−1, where dim denotes the
Euclidean dimension of the lattice. For the extreme situ-
ation of an exact CT, where the number of sites on the
surface is of the same order of magnitude as those in the
bulk, corresponding to dim → ∞. This is reflected by an
exponential increase of 〈k(�)〉 with �, as shown in Figure
3a.

A similar behavior is expected to be found for many
other complex networks, which have a very small diame-
ter. In Figure 3 we illustrate the behavior of 〈k(�)〉 for the
same set of networks, showing that exponential increase is
present for the majority of them. However, as the network
is finite, 〈k(�)〉 must decrease for sufficiently large value
of �, making it difficult to assign a precise behavior for
the dependence between 〈k(�)〉 and � for these networks.
In Figure 3a we find deviations from the exponential in-
crease already when � = 4 for some networks. The DHL
and WHL (Fig. 3b) show a different pattern, consisting of
an oscillating period 2 behavior, which is caused mainly by
the contribution of the nodes introduced in the last hierar-
chy. For instance, in the DHL, these nodes are connected
only to two other nodes but, for � = 2 and 3, they can
have up to 9 and 4 neighbors. This situation is repeated
for larger values of � and also for the WHL.

Results for higher order degree have been considered
previously, as in the attempt to express 〈k(2)〉 as func-
tion of 〈k(1)〉 in the context of egocentric networks [9].
However, the analysis does not go beyond � = 2. In [17],

Fig. 3. Dependence of 〈k(�)〉×� for distinct networks. Symbols
and lines follow the same convention as in Figure 2. (a) Values
of N are the same used in Figure 2 for CT, AN, BA and ER,
with pa = 0.008. For WS-N, N = 3500 and pr = 0.2. (b) Same
values of N as in Figure 2 for DHL and WHL.

the authors define and evaluate the hierarchical degree of
order �, which is related, but not equivalent, to that one
resulting in our framework. Nevertheless, the overall de-
pendence of this parameter with respect to �, follow similar
behavior as those displayed in Figure 3.

3.3 Node distribution probability

The usual node distribution p(k; � = 1), evaluated after
the knowledge of the degrees of each individual node,
gives a picture about the way the nodes are related to
each other, e.g. whether there are nodes with preferential
attachment, or whether all of them are, on the average,
similar to each other. For general �, p(k; �) provides the
same information on the number of nodes connected by �
steps. As we will see below for our analysis of prototypical
networks, the same distribution law can subsist or not for
values of � other than 1, what can be useful to the clas-
sification of actual networks. Let us note that p(k; � = 1)
usually displays a bell shaped form for many kinds of net-
works found in nature, as well as those generated by the
ER (Fig. 4a) and WS-N (not shown) algorithms. Social
and natural BA networks, the features of which we re-
produce by the preferential attachment growth algorithm,
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Fig. 4. Dependence of the probability distribution p(k; �) and
cumulative probability distribution P (k; �)×k for distinct net-
works. (a) Curves for ER with same values of N and pa used
in Figures 2 and 3, when � = 1 (solid), 2 (hollow), 3 (hor-
izontal dash) and 5 (vertical dash) squares. (b) In the large
panel, P (k; �) follows power law for BA (when � = 1 (solid)
and � = 5 = D − 1 (hollow)); in the inset, points indicate
power law decay for p(k; � = 1) in AN, DHL and WHL.

are representative of another possible pattern, character-
ized by p(k; 1) ∼ k−γ . For the purpose of a clearer picture,
there we draw P (k; �) = 1

k

∫ ∞
k

p(k′; �)dk′ for the usual BA,
reproducing the value γ  3, as shown in Figure 4b for
� = 1. In our investigations, we also find similar behavior
for the AN, DHL and WHL networks, as shown in the
points for p(k) in the inset of this figure. The CT is a
trivial case where p(k; 1) reduces to a single point.

For � > 1, our results show that the bell shaped pattern
for p(k; �) is reproduced when � > 1 for the ER and WS-
N networks (see Fig. 4a). As shown before, the average
node degree increases with �, so that it is natural that the
curves for p(k; �) are shifted towards larger values of k.
The situation changes only for sufficient large �  D, when
finite size effects become relevant. Then, the majority of
nodes have already reached their most distant neighbors
while others miss only few connections. In this situation,
the few non zero contributions to p(k; �  D) come for
values of k ∼ 1, so that the peak of the curve is shifted to
the region close to the origin, as shown, in Figure 4a, for
� = 5.

For the BA networks, the regions where the higher
order p(k; �)’s receive significant contributions are also
pushed to large values of k(�). In general, the distributions
loose the power law behavior, assuming distinct forms as �
increases. Exceptions are provided, e.g., in the example
shown for the cumulative distribution P (k; �) in the large
panel of Figure 4b. There we find a very interesting return
to a power law distribution in the region of low values of k
when � = D−1, with an exponent γ  1.2. It is important
to recall that, once we analyze networks with a finite num-
ber of nodes N , the sum over � of individual values ki(�)
is bounded to N − 1. Thus, for nodes with large values of
ki(�) for low �, this measure has a tendency to decrease
as � increases an the other way around. Thus, the power
law decay for � = D − 1 observed in Figure 4b is due to
a special behavior of the low degree nodes within the BA
network. Note that other networks that satisfy the scale
free distribution, like AN, WHL and DHL do not show
similar behavior. As before, this measure can help identi-
fying whether a given network based on empirical data can
be accurately described by those generated by proposed
algorithms.

3.4 Hierarchical property

There are several distinct concepts of hierarchical organi-
zation, some of them stemming from the network frame-
work, others from geometrical constructions, self similar
fractal sets, etc. In this work, apart from using the word
“hierarchical” to denote DHL and WHL, we refer to the
concept introduced in [26], according to which a network
has the hierarchical property if Ci(1), the clustering coeffi-
cient of an individual node i, when are drawn as function
of the individual node degree ki(1), shows a power law
decrease. Much as observed with the analysis of the node
distribution p(k; �), evidences of hierarchical character for
R(� > 1), networks are rare, and are only found when
R(1) has already such character.

For the distinct networks we work with, indications of
power law behavior for � ≥ 1 are found for the AN and
WHL networks, as illustrated in Figures 5a and 5b. Both
networks show C(k; 1) ∼ k−1 asymptotic dependence. On
the other hand, DHL does not show this property since,
as discussed before, ci(� = 1) ≡ 0, ∀i.

We find slight evidences, for � > 1, of power law de-
pendence in some subsets of points. In the particular case
� = 2, for the AN, several points are aligned, seemingly
building short patches that obey power law decrease. This
very peculiar distribution of points is recurrent for all val-
ues of N that correspond to a full generation of the con-
struction of AN.

For WHL, several points of the curves for C(k; 1)
and C(k; 2) coincide exactly, so that a subset of points
of C(k; 2) × k still follows a power law decay. This is
exemplary shown in Figure 5b, for the 7th generation
(7814 nodes). To explain the presence of this coincident
points, we must take into account that, on increasing the
generation of WHL, we add points to the region of large
values of k of the C(k; 1) curve, while conserving all but
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Fig. 5. Data for C(k; �)×k indicating hierarchical arrangement
of nodes for AN (a) and WHL (b), respectively with N = 3283
and 7814 nodes. Data are drawn for � = 1 (hollow) and � = 2
(solid).

one point of the previous generation. In Figure 5b, two
newly added points, k = 64 and 96, are absent in the
curve for the 6th generation. They correspond to nodes
with very large degree, e.g. at the root sites or the inter-
mediate position, where the main bridge connecting two
branches is placed. Now, when we look for pairs of second
neighbors of the 7th generation, we find that part of them
coincides exactly with first neighbors in the 6th genera-
tion, so that the C(k; 2) × k curve of the 7th generation,
for this subset, falls on the top the C(k; 1) curve of the
6th generation. The other subset, which contributes to
points that fall off the straight line, is formed by pairs
of second neighbors that do not correspond to any first
neighbors of the previous generation. For larger values
of �, we should still observe this truncated pattern only
for the even values of �. Indeed, as already discussed be-
fore, C(�) = 0 for odd �’s.

3.5 Assortativity degree coefficient

Several assortativity properties can be assigned to a net-
work [2]. Each of them is quantified by a corresponding
coefficient A, which indicates whether the pairs of nodes

Fig. 6. Dependence of the degree assortativity coefficient A(�)
with �. (a) Examples of assortative behavior for WS-N network,
with N = 3500 and pr = 0.2; neutral behavior for ER, with
same parameter values as in Figure 2; oscillatory character for
AN (N = 3283); dissortative behavior for CT (N = 1534). (b)
Results for DHL and WHL with the same values of N as in
Figure 2, indicate � = 2 periodic oscillations from dissortative
to assortative behavior.

directly connected by a link are more likely to behave
alike (A > 0) or dislike (A < 0). The assortativity de-
gree coefficient [27], which takes into account the aver-
age degree of the nearest neighbors of a node of degree
k represented by knn(k), probes the degrees of the nodes
at each side of a link. Here, we denote by A(�) the co-
efficients that quantify the degree assortativity for the
corresponding neighborhoods O(�). Each A(�) measures
whether pairs of nodes, that are � steps apart, are likely
to be �-connected to other nodes that have the same �
degree k(�). As we show below, the assortative character
prevails over a large range of values of � for most networks,
with the exception of the geometrically constructed AN,
DHL and WHL.

The results in Figures 6a, 6b display several kinds
of patterns, indicating that the behavior of A(�) × � is
very sensitive to the type of network. Figure 6a shows
that WS-N networks have usual positive assortativity
A(� = 1)  0.2. This value results from the contribution
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of the large majority of sites that are connected to their
original neighbors in an ordered structure. On increas-
ing �, A(�) remains positive for a large � interval. After
this phase, A(�) goes through a steep descent to negative
values, where it remains until � = D. This change reveals
that the large � neighborhoods completely loose the local
character and nodes are overwhelmingly �-connected to
nodes with distinct �-degree.

The results for a finite CT, in the same panel, are
strongly biased by surface effects. In an infinite tree, all
nodes have the same degree, so that A(� = 1) = 1. How-
ever, for any finite tree, a dissortative character is ob-
served, which can be explained as follows: (i) the num-
ber of sites added in the last generation has the same
order of magnitude of the existing sites; (ii) all of them
have a distinct number of neighbors as those added be-
fore, the same happening to the nodes that are connected
to them. In the evaluation of A(1), nodes with distinct de-
gree on the end of all newly introduced links, contribute
negatively, so that these contributions lead to a dissorta-
tive character to CT. The same occurs for larger values
of �, so that all A(�) deviate strongly from the constant
value 1 that they assume in an infinite tree. However, the
constant value 1 can be recovered, in a finite sized net-
work, if one neglects, successively, the effect of the �th
lately added nodes.

For the ER networks, also illustrated in Figure 6a, pure
randomness shows neutral behavior, hence A(1) = 0. Nu-
merical simulations reproduce this result, which should be
valid for several values of �. However, for large �, finite size
effects end up by driving A(�) to the negative region.

With respect to geometrically grown networks, oscil-
lations between dissortative to assortative character is a
common feature for AN, DHL and WHL. In the first sit-
uation (Fig. 6a), the amplitude of variation of A(�) is not
so large and, due to the very small value of D, short lived.
On the other hand, for DHL we have very large variations
limited only by the extremal values ±1 (see Fig. 6b). This
very peculiar behavior may be explained by noting that,
for � = 1, no node has neighbors with the same degree
as itself. On the other hand, when � = 2, the number of
nodes with second order neighbors having the same degree
is very large. Thus, oscillations set it, changing the assor-
tative character at each step. For the WHL, very large
oscillations are also observed, although they do not reach
the extremal values as for DHL. Indeed, in this situation,
the presence of the cross bonds lead to a large heterogene-
ity in the degree of the nodes, what causes a decrease in
the amplitudes of oscillations.

3.6 Fractal dimension

As discussed in Section 2, the evaluation of the higher
order neighborhoods is an important step in towards cov-
ering the network with disjoint boxes, what is required
to obtain the network fractal dimension dF as proposed
in [18]. Results for the distinct networks are summarized
in Figure 7, where we draw L(�), the number of boxes
containing nodes which are at maximal distance � of each

Fig. 7. Dependence of ln(L(�)) × ln(�). (a) Results for WS-N
(N = 1000, pr = 0.001, open circles) and ER (N = 1432, pa =
0.0014) suggest scaling and fractality. On the other hand, no
evidence of scaling is found for BA and WS-N, when a larger
value of pr(= 0.2) and same N is used (solid circles). (b) In
the large panel, results for DHL and WHL (with same N as
in Fig. 2) also suggest scaling. In the inset, results for CT
(N = 1534), with exponential dependence indicating that both
Euclidean and fractal dimensions → ∞.

other, as function of �, in logarithmic scale. A linear depen-
dence over a significative � interval, indicative of a fractal
dimension, can be assigned only for some networks. Our
results go along the lines of [18], indicating that AN, BA
and CT do not show scaling behavior.

So, we see in Figure 7a that, for WS-N networks, well
defined scaling region can be found for very small values
of pr, when we have a large value of D. Despite the fact
that WS-N networks show small world features, for this
small value of p and of N , the network does not show yet
a 〈d〉 ∼ log N dependence, what would prevent the net-
work from displaying a fractal dimension. On the other
hand, for larger values of pr, the figure shows that it is no
longer possible to assign a value for dF . The same behav-
ior is found for AN and BA networks, where the points
do not follow a linear behavior, for any value of nodes in
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the network. For ER networks, this is also the typical be-
havior, unless pa assumes the critical value, where a giant
percolating cluster containing the large majority of nodes
emerge. In this case, a fairly well defined scaling region
between L(�) and � over a significant � interval is noted
with dF = 1.96, confirming the results in [18].

In Figure 7b, DHL and WHL also show scaling be-
havior, although the decrease of L(�) proceeds through a
series of large size steps. The slope of both curves are sim-
ilar (∼1.82), but differ from the values obtained for the
usual fractal dimension [28]. We observe, in the inset of
Figure 7a, that the CT definitely follows an exponential
rather than power law decay. This corresponds to an infi-
nite value for dF , what is in agreement with the fact that
it is not possible to associate a finite dimension to the
tree, where the number of sites in the bulk and surface
have the same order of magnitude. These results confirm
that the definition of dF is sound, capturing the essential
features of quite distinct networks but, as in the case of
DHL, values for dF may differ from those obtained from
other definitions.

4 Conclusions

In this work we put forward, in a systematic way, the in-
vestigation of the higher order neighborhoods of a complex
network R. The basic concepts, that have been introduced
in a previous work, are developed in many aspects, open-
ing new paths for the exploration of properties related
to structures in a larger scale than that of the immediate
vicinity of a node. According to the basic idea, each neigh-
borhood O(�), represented by an adjacency matrix M(�),
is regarded as a network in itself, so that many distinct
quantifiers used for network characterization can be used
to obtain the properties of each neighborhood. On the
other hand, the analysis of each of these networks uncov-
ers large distance properties of the original network.

We were able to reproduce known results for the net-
work indices when � = 1 and, at the same time, present
some very peculiar features for the same parameters when
evaluated at larger values of �.

In the discussion of the � dependent quantifiers, we find
that many of them behave in a oscillatory way with re-
spect to �. This is the case of C(�) for self-similar networks,
as CT, DHL, WHL, as well as for hypercubic lattices. For
ER and WS-N networks, oscillatory behavior in C(�) can
also be found, provided linking and rewiring probabili-
ties are small enough. Interesting enough, the values of
〈k(�)〉 oscillate for both DHL and WHL, for all � range.
For all other networks, the average node degree 〈k(�)〉 in-
creases exponentially for several networks, but this behav-
ior can be masked, for networks with very small values
of D. Hierarchical property and scale-free distribution of
nodes are rare events for large values of �. Nevertheless,
we present examples of BA, AN and WHL, where corre-
sponding power law distributions for p(k; �) and C(k; �)
are found for � > 1. Properties related to degree assorta-
tivity or dissortativity are likely to remain the same as �
increases. One exception, again due to the emergence of
oscillatory behavior, refers to the self similar DHL and

WHL. Finally, we use the information obtained from the
set M(�) to evaluate the fractal dimension of all investi-
gated networks. The obtained results reproduce well into
the expected values, among which we quote dF → ∞ for
CT, smaller values of dF for less connected networks, and
some troubles in finding precise values when the network
diameter is very small.

Our results for C(�) and 〈k(�)〉 can be compared to
reports for similar measures discussed recently in the lit-
erature [9,16,17], although the authors do not explore all
range � = 1, 2, ...D nor all network types as we do. Regard-
ing C(�), our measure takes into account two neighbors of
order � of node r that are also linked to each other by
� steps, while the previous definition requires that they
are � = 1 neighbors. On the other hand, 〈k(�)〉 considers
only one single connection between the node r and each
of its �-th order neighbors, while the hierarchical degree
considers all links among nodes of the �th and � + 1-th.

We emphasize that these prior results could also be
used to evaluate distributions that are correspondent to
p(k; �) and C(k; �) introduced here. However, these issues
have not been considered by the authors. Our results in-
dicate that power law dependence for p(k; �) can indeed
be found for BA networks,when �  1, whereas scaling
behavior in C(k; �) has been found for WHL. Finally, as
far as we know, similar analyzes for A(�) have not been re-
ported before. The main result of that subsection is that,
with exception of DHL and WHL, the same assortative
property is preserved for higher order neighborhoods.

As a concluding remark, we would like to reinforce that
this series of investigations we opened in this work is very
broad. It can be explored in many directions, certainly
including the exploration of data from actual networks.
We think that the neighborhood identification approach
may be helpful also in the evaluation of other suggested
measures that can be found in the available literature.

This work was partially supported by CNPq and FAPESB.
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